

Third Semester B.E. Degree Examination, June/July 2013
 Engineering Mathematics - III

Time: 3 hrs .

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Obtain the Fourier series expansion of $f(x)=\left\{\begin{array}{cll}x, & \text { if } 0 \leq x \leq \pi \\ 2 \pi-x, & \text { if } & \pi \leq x \leq 2 \pi\end{array}\right.$ and hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots .$.
(07 Marks)
b. Find the half range Fourier sine series of $f(x)=\left\{\begin{array}{ccc}x, & \text { if } 0<x<\pi / 2 \\ \pi-x, & \text { if } \pi / 2<x<\pi\end{array}\right.$.
(06 Marks)
c. Obtain the constant term and coefficients of first cosine and sine terms in the expansion of y from the following table:
(07 Marks)

x	0	60°	120°	180°	240°	300°	360°
y	7.9	7.2	3.6	0.5	0.9	6.8	7.9

2 a. Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}a^{2}-x^{2}, & |x| \leq a \\ 0, & |x|>a\end{array}\right.$ and hence deduce $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.
b. Find the Fourier cosine and sine transform of $f(x)=x e^{-a x}$, where $a>0$.
(07 Marks)
c. Find the inverse Fourier transform of $\mathrm{e}^{-\mathrm{s}^{2}}$.
(07 Marks)
3 a. Obtain the various possible solutions of one dimensional heat equation $u_{t}=c^{2} u_{x x}$ by the method of separation of variables.
(07 Marks)
b. A tightly stretched string of length I with fixed ends is initially in equilibrium position. It is set to vibrate by giving each point a velocity $\mathrm{V}_{\mathrm{o}} \sin \left(\frac{\pi \mathrm{x}}{\mathrm{I}}\right)$. Find the displacement $\mathrm{u}(\mathrm{x}, \mathrm{t})$.
(06 Marks)
c. Solve $u_{x x}+u_{y y}=0$ given $u(x, 0)=0, u(x, 1)=0, u(1, y)=0$ and $u(0, y)=u_{0}$, where u_{0} is a constant.
(07 Marks)
4 a. Using method of least square, fit a curve $\mathrm{y}=\mathrm{ax}^{\mathrm{b}}$ for the following data.
(07 Marks)

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

b. Solve the following LPP graphically:

Minimize $Z=20 x+16 y$
Subject to $3 x+y \geq 6, x+y \geq 4, x+3 y \geq 6$ and $x, y \geq 0$.
(06 Marks)
c. Use simplex method to

Maximize $Z=x+(1.5) y$
Subject to the constraints $\mathrm{x}+2 \mathrm{y} \leq 160,3 \mathrm{x}+2 \mathrm{y} \leq 240$ and $\mathrm{x}, \mathrm{y} \geq 0$.
(07 Marks)

PART - B

5 a. Using Newton-Raphson method find a real root of $x+\log _{10} x=3.375$ near 2.9, corrected to 3-decimal places.
(07 Marks)
b. Solve the following system of equations by relaxation method:
$12 x+y+z=31, \quad 2 x+8 y-z=24, \quad 3 x+4 y+10 z=58$
(07 Marks)
c. Find the largest eigen value and corresponding eigen vector of following matrix A by power method

$$
\mathrm{A}=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]
$$

Use $\mathrm{X}^{(0)}=[1,0,0]^{\mathrm{T}}$ as the initial eigen vector.
(06 Marks)
6 a. In the given table below, the values of y are consecutive terms of series of which 23.6 is the $6^{\text {th }}$ term, find the first and tenth terms of the series.
(07 Marks)

x	3	4	5	6	7	8	9
y	4.8	8.4	14.5	23.6	36.2	52.8	73.9

b. Construct an interpolating polynomial for the data given below using Newton's divided difference formula.
(07 Marks)

x	2	4	5	6	8	10
$f(x)$	10	96	196	350	868	1746

c. Evaluate $\int_{0}^{1} \frac{x}{1+\mathrm{x}^{2}} \mathrm{dx}$ by Weddle's rule taking 7 -ordinates and hence find $\log _{\mathrm{e}} 2$.
(06 Marks)

7 a. Solve the wave equation $u_{t t}=4 u_{x x}$ subject to $u(0, t)=0 ; \quad u(4, t)=0 ; u_{t}(x, 0)=0$; $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(4-\mathrm{x})$ by taking $\mathrm{h}=1, \mathrm{k}=0.5$ upto four steps.
(07 Marks)
b. Solve numerically the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(0, t)=0=u(1, t), t \geq 0$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$. Carryout computations for two levels taking $h=1 / 3$ and $k=1 / 36$.
(07 Marks)
c. Solve the elliptic equation $\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0$ for the following square mesh with boundary values as shown in Fig. Q7(c).
(06 Marks)

Fig.Q7(c)

8 a. Find the z-transform of: i) $\operatorname{sinhn} \theta$; ii) $\operatorname{coshn} \theta$.
(07 Marks)
b. Obtain the inverse z-transform of $\frac{8 z^{2}}{(2 z-1)(4 z-1)}$.
(07 Marks)
c. Solve the following difference equation using z -transforms:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+2}+2 \mathrm{y}_{\mathrm{n}+1}+\mathrm{y}_{\mathrm{n}}=\mathrm{n} \quad \text { with } \quad \mathrm{y}_{0}=\mathrm{y}_{1}=0 \tag{06Marks}
\end{equation*}
$$

Third Semester B.E. Degree Examination, June/July 2013

Materials Science and Metallurgy

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain: i) APF, ii) Coordination number. Show that atomic packing factor of FCC crystal structure is higher than that of BCC crystal structure.
(10 Marks)
b. Discuss the principal types of point defects found in crystals. Explain their significance.
(06 Marks)
c. How do you distinguish between steady state and non-steady state diffusion?
(04 Marks)

2 a. Explain in detail the mechanical properties in elastic and plastic region.
(10 Marks)
b. Discuss how the slip phenomenon differs in case of a polycrystal to the single crystal.
(06 Marks)
c. Distinguish between slip and twinning.
(04 Marks)

3 a. How fractures are classified? State and explain different types of fracture giving appearance of the fracture in each case.
(10 Marks)
b. What is meant by creep? With the help of creep curve, explain different stages of creep.
(06 Marks)
c. Write a brief note fatigue properties.
(04 Marks)

4 a. Define nucleation. Derive an expression for the critical size of the nucleus for homogeneous nucleation.
(08 Marks)
b. Describe the solidification mechanism in a pure metal. Distinguish between homogeneous and heterogeneous nucleation.
(06 Marks)
c. Discuss the factors worked out by Hume-Rothery that governs the formation of an ideal solid solution.
(06 Marks)

PART - B

5 a. Draw iron-carbon equilibrium diagram and mark on it all salient temperatures, composition and phases involved. Elaborate the invariant reactions.
b. State Gibb's phase rule and explain the terms associated with it.
c. Explain the lever rule with an example.
(04 Marks)
6 a. What is the purpose of case hardening? Discuss the different methods of case hardening.
b. What is T-T-T diagram? How is it different from phase diagram? Describe the various transformed products of austenite on cooling.
(06 Marks)
c. How do you distinguish normalizing, full annealing and process annealing?

7 a. State the properties and uses of grey cast iron, malleable cast iron, spheroidal cast iron and white cast ion.
(10 Marks)
b. Distinguish between the following:
i) Hypo-eutectoid and hyper-eutectoid steels
ii) Hypo-eutectic and hyper-eutectic cast irons.
c. Write a note on Al-Si alloys.

8 a. Define composite material and give the classification of composites. Enumerate important characteristics of composites.
(08 Marks)
b. Describe the features of fibrous composites, laminated composites and particulate composites.
(08 Marks)
c. Explain the role of reinforcement and matrix materials in a composite.

Third Semester B.E. Degree Examination, June/July 2013 Mechanical Measurements and Metrology

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What is metrology? State the objectives of metrology.
(06 Marks)
b. Briefly explain limits, fits and tolerances.
(06 Marks)
c. Using M112 set of slip gauges, build the following dimensions:
i) 52.498
ii) $\quad 48.3275$
(08 Marks)
2 a. Explain universal interchangeability and selective assembly
(06 Marks)
b. What do you understand by line and end standard? Explain wavelength standard. (06 Marks)
c. Determine the tolerances on the hole and the staff for a precision running fit designated by $50 \mathrm{H}_{7} \mathrm{~g}_{6}$. Given:
i) 50 mm lies between $30-50 \mathrm{~mm}$
ii) \quad (microns) $=0.45(\mathrm{D})^{1 / 3}+0.001 \mathrm{D}$
iii) Fundamental deviation for ' H ' hole $=0$
iv) Fundamental deviation for ' g 'shaft $=-2.5 \mathrm{D}^{0.34}$
v) $1 \mathrm{~T} 7=16 \mathrm{i}$
vi) $1 \mathrm{~T} 6=10 \mathrm{i}$

State the actual maximum and minimum sizes of the hole and shaft and maximum and minimum clearances.
(08 Marks)
3 a. What is a comparator? Explain Johnson Mikrokartor comparator with a neat sketch.
(06 Marks)
b. What are the advantages of electrical comparators? Explain the principle of optical comparator.
(07 Marks)
c. Describe with a neat sketch, the construction and working of LVDT.
(07 Marks)
4 a. Explain with a neat sketch the terminology of screw threads.
(06 Marks)
b. Explain the principle of autocollimator with a neat sketch.
(06 Marks)
c. Derive an expression for the effective diameter of a screw thread by 3-wire method.
(08 Marks)

PART - B

5 a. Explain with suitable examples, the three stages of measurement system.
(06 Marks)
b. Define: i) Calibration
ii) Precision
iii) Accuracy
iv) Sensitivity
v) Linearity.
(10 Marks)
c. Compare electrical and mechanical transducers.
(04 Marks)

6 a. Explain with a sketch, the principle of:
i) piezo-electric transducer
ii) ionization transducer.
(08 Marks)
b. Explain with a block diagram, the general telemetering system.
c. Explain the working of:
i) stylus type oscillograph
ii) $x-y$ plotter.
(06 Marks)
7 a. Explain with a neat sketch, multiple lever platform balance.
(06 Marks)
b. What are the types of dynamometers? Explain with a neat sketch, hydraulic dynamometer.
(08 Marks)
c. Explain the operation of McLeod gage and pirani gage.

8 a. What are the methods of strain measurement? Explain the principle of electrical resistance strain gauge.
(06 Marks)
b. What is a thermocouple? Briefly explain the laws of thermocouple.
(06 Marks)
c. Write notes on:
i) Strain gauge factor
ii) Temperature compensation
iii) Cross sensitivity
iv) Strain gauge bonding materials.

Third Semester B.E. Degree Examination, June/July 2013 Basic Thermodynamics

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of thermodynamic tables permitted.

PART - A

1 a. Classify the following as open/closed/isolated systems:
i) Tree;
ii) Printer;
iii) Baking of bread in an oven;
iv) Fan.
(04 Marks)
b. Define the following with examples:
i) Property; ii) Cycle; iii) Path function; iv) Reference temperature; v) Quasistatic process; vi) Thermodynamic equilibrium; vii) Macroscopic approach; viii) State point. (08 Marks)
c. Develop a linear temperature scale ' B ' where in ice and normal human body temperature are assumed as two fixed points and assigned the values $0^{\circ} \mathrm{B}$ and $50^{\circ} \mathrm{B}$ respectively. If the temperature of human body on Celsius scale is $36.7^{\circ} \mathrm{C}$, obtain the relation between ' B ' scale and Celsius scale and find out water boiling temperature in ' B ' scale.

```
(08 Marks)
```

2 a. Define 'work' from thermodynamic point of view and derive an expression for flow work. (06 Marks)
b. Define 'heat' and bring out dissimilarities between heat and work. (06 Marks)
c. A gas contained in a cylinder fitted with a piston loaded with a small number of weights is at 1.3 bar pressure and $0.03 \mathrm{~m}^{3}$ volume. The gas is heated until the volume increases to $0.1 \mathrm{~m}^{3}$. Calculate the work done by the gas in the following processes: i) Pressure remains constant; ii) Temperature remains constant; iii) $\mathrm{PV}^{1.3}=\mathrm{C}$ during the process. Show the processes on $\mathrm{P}-\mathrm{V}$ diagram.
(08 Marks)
3 a. With a neat sketch, explain the famous 'Joules experiment' to show that energy transfer to an adiabatic system is a function of end states only.
(04 Marks)
b. For isotherming nonflow and steady flow processes show that $\int_{1}^{2} p d v=-\int_{1}^{2} y d p . \quad$ (06 Marks)
c. Simplify SFEE equation for a case of throttle value.
(02 Marks)
d. An ideal gas $(\gamma=1.4)$ expands reversibly in a turbine from 10 bar to 1 bar. Assume that process law is $\mathrm{P}=12-5 \mathrm{~V}$, where ' P ' is in bar and ' V ' is in $\mathrm{m}^{3} / \mathrm{kg}$. If the heat loss from the turbine is $200 \mathrm{~kJ} / \mathrm{kg}$, calculate the shaft work done.
(08 Marks)
4 a. Define Kelvin-Plank statement, Clausius statement of $I^{\text {nd }}$ law of thermodynamics and show that they are equivalent.
(08 Marks)
b. Using Kelvin-Plank statement show that free expansion process is irreversible. ($\mathbf{0 4}$ Marks)
c. A heat pump working on a reversed Carnot cycle takes in energy from a reservoir maintained at $5^{\circ} \mathrm{C}$ and delivers it to another reservoir where temperature is $77^{\circ} \mathrm{C}$. The heat pump derives power for its operation from a reversible heat engine operating with in the higher and lower temperatures of $1077^{\circ} \mathrm{C}$ and $77^{\circ} \mathrm{C}$. For every $100 \mathrm{~kJ} / \mathrm{kg}$ of energy supplied to reservoir at $77^{\circ} \mathrm{C}$, estimate the energy taken from the reservoir at $1077^{\circ} \mathrm{C}$.
(08 Marks)

PART - B

5 a. Derive Clausius inequality for a cycle.
(08 Marks)
b. Using entropy principle show that mixing of two fluids is an irreversible process.
c. One kg of water at 273 K is heated to 373 K by first bringing it in contact with reservoir at 323 K and then reservoir at 373 K . What is the change in entropy of universe?
(06 Marks)
6
a. With neat sketches indicate various parameters on typical T-S and H-S diagrams. (06 Marks)
b. With a neat sketch, explain how throttling calorimeter can be used to measure the dryness fraction of wet vapour.
(06 Marks)
c. Stream at 1 MPa and $250^{\circ} \mathrm{C}$ enters a nozzle with a velocity of $60 \mathrm{~m} / \mathrm{s}$ and leaves the nozzle at 10 kPa . Assuming the flow process to be isentropic and the mass flow rate to be $1 \mathrm{~kg} / \mathrm{s}$ determine: i) The exit velocity; ii) The exit diameter of nozzle.
(08 Marks)
7 a. Obtain four max well relations for a simple compressible system in the form $\left(\frac{\partial \mathrm{M}}{\partial \mathrm{y}}\right)_{\mathrm{x}}=\left(\frac{\partial \mathrm{N}}{\partial \mathrm{x}}\right)_{\mathrm{y}}$.
(08 Marks)
b. Obtain Clausius clapeyron relation involving the saturation temperature and pressure.
(06 Marks)
c. Determine the enthalpy of vapourization of water at $200^{\circ} \mathrm{C}$ using Clapeyron equation.
(06 Marks)
8 a. State and explain Amagat's law.
(06 Marks)
b. State and explain law of corresponding states.
(06 Marks)
c. A mixture of methane with, just enough oxygen to permit combustion, is burned. The temperature and pressure of the final mixture are $27^{\circ} \mathrm{C}$ and 101.3 kPa respectively. Calculate:
i) Mass traction of reactants.
ii) The volume traction of products.
iii) The partial pressure of water vapour in the products of combustion and
iv) Volume of products.
(08 Marks)

Third Semester B.E. Degree Examination, June/July 2013 Mechanics of Materials

Note: 1. Answer FIVE full questions, selecting
 at least TWO questions from each part.

2. Missing data may be suitably assumed wherever necessary.

PART - A

1 a. The tensile test was conducted on a mild steel bar. The following data was obtained from the test:

Diameter of steel bar	$=16 \mathrm{~mm}$
Gauge length of the bar	$=80 \mathrm{~mm}$
Load at proportionality limit	$=72 \mathrm{kN}$
Extension at a load of 60 kN	$=0.115 \mathrm{~mm}$
Load at failure	$=80 \mathrm{kN}$
Final gauge length of bar	$=104 \mathrm{~mm}$
Diameter of the rod at failure	$=12 \mathrm{~mm}$

Determine: i) Young's modulus; ii) Proportionality limit; iii) True breaking stress and iv) Percentage elongation.
(10 Marks)
b. A brass bar having cross-sectional area $300 \mathrm{~mm}^{2}$ is subjected to axial forces as shown in Fig.Q.1(b). Find the total elongation of the bar. $\mathrm{E}=84 \mathrm{GPa}$.
(10 Marks)

2 a. A bar of 20 mm diameter is tested in tension. It is observed that when a load of 37.7 kN is applied, the extension measured over a gauge length of 200 mm is 0.12 mm and contraction in diameter is 0.0036 mm . Find Poisson's ratio and elastic constants E, G, K.
(08 Marks)
b. A composite bar made up of aluminium and steel is held between two supports as shown in Fig.Q.2(b). The bars are stress free at a temperature of $42^{\circ} \mathrm{C}$. What will be the stresses in the two bars with the temperature drops to $24^{\circ} \mathrm{C}$. If i) The supports are unyielding; ii) the supports come nearer to each other by 0.1 mm . The cross-sectional area of steel bar is $160 \mathrm{~mm}^{2}$ and that of aluminium bar is $240 \mathrm{~mm}^{2}, \mathrm{E}_{\mathrm{A}}=0.7 \times 10^{5} \mathrm{MPa}, \mathrm{E}_{\mathrm{S}}=2 \times 10^{5} \mathrm{MPa}$, $\alpha_{A}=24 \times 10^{-6}$ per $^{\circ} \mathrm{C}$ and $\alpha_{S}=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$.
(12 Marks)

Fig.Q.2(b)

3 a. Show that the sum of the normal stresses on any two planes at right angles in a general two dimensional stress system is constant.
(08 Marks)
b. At a certain point in a strained material the values of normal stresses across two planes at right angles to each other are 80 MPa and 32 MPa , both tensile and there is a shear stress of 32 MPa clock wise on the plane carrying 80 MPa stresses across the planes as shown in Fig.Q.3(b). Determine:
i) Maximum and minimum normal stresses and locate their planes.
ii) Maximum shear stress and specify its plane.

Fig.Q.3(b)
4 a. State Castigliano's theorem. Where do you use it?
(03 Marks)
b. The bar with circular cross-section as shown in Fig.Q.4(b) is subjected to a load of 10 kN . Determine the strain energy stored in it. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(07 Marks)

c. A thin cylindrical shell 1 m in diameter and 3 m long has a metal thickness of 10 mm . It is subjected to an internal fluid pressure of 3 MPa . Determine the change in length, diameter and volume. Also find the maximum shearing stress in the shell. Assume Poison's ratio is 0.3 and $\mathrm{E}=210 \mathrm{GPa}$.
(10 Marks)

PART - B

5 a. Explain the terms:
i) Sagging bending moment.
ii) Hogging bending moment.
iii) Point of contraflexure.
b. What are the different types of loads acting on a beam? Explain with sketches. ($\mathbf{0 6}$ Marks)
c. A simply supported beam of span 6 m is subjected to a concentrated load of 25 kN acting at a distance of 2 m from the left end. Also subjected to an uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ over the entire span. Draw the bending moment and shear force diagrams indicating the maximum and minimum values.
(08 Marks)
6 a. Enumerate the assumptions made in the theory of simple bending.
(04 Marks)
b. A cantilever of square section $200 \mathrm{~mm} \times 200 \mathrm{~mm}, 2 \mathrm{~m}$ long, just fails in flexure when a load of 12 kN is placed at is free end. A beam of the same material and having a rectangular cross section 150 mm wide and 300 mm deep is simply supported over a span of 3 m . Calculate the minimum central concentrated load required to break the beam.
(08 Marks)
c. A rolled I section of size $50 \mathrm{~mm} \times 75 \mathrm{~mm}$ is used as a beam, with an effective span of 3 meters. The flanges are 5 mm thick and web is 3.75 mm thick. Calculate the uniformly distributed load the beam can carry if the maximum intensity of shear stress induced is limited to $40 \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)
a. Show that for a simply supported beam of length ' l ' carrying a concentrated load W at its mid span, the maximum deflection in $\mathrm{W} l^{3} / 48 \mathrm{EI}$.
(10 Marks)
b. A simply supported steel beam having uniform cross-section is 14 m span and is simply supported at its ends. It carries a concentrated load of 120 kN and 80 kN at two points 3 m and 4.5 m from the left and right end respectively. If the moment of inertia of the section is $160 \times 10^{7} \mathrm{~mm}^{4}$ and $\mathrm{E}=210 \mathrm{GPa}$, calculate the deflection of the beam at load points.
(10 Marks)
8 a. A hollow circular steel shaft has to transmit 60 kW at 210 rpm such that the maximum shear stress does not exceed 60 MPa . If the ratio of internal to external diameter is equal to $3 / 4$ and the value of rigidity modulus is 84 GPa , find the dimensions of the shaft and angle of twist in a length of 3 m .
(10 Marks)
b. A 1.5 m long column has a circular cross section of 50 mm diameter. One end of the column is fixed in direction and position and the other end is free. Taking the factor of safety as 3, calculate the safe load using.
Rankine's formula taking yield stress $560 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=\frac{1}{1600}$.
Euler's formula, taking $\mathrm{E}=1.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
(10 Marks)

10ME/AU/TL35

Third Semester B.E. Degree Examination, June/July 2013 Manufacturing Process - I

Time: 3 hrs .
Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

1 a. Explain the basic steps involved in a casting process.
(06 Marks)
b. What are pattern allowances? Explain any two.
(05 Marks)
c. What are additives? List the various additives used in moulding sand.
(04 Marks)
d. Explain with neat sketch sweep pattern.
(05 Marks)
2 a. Describe the desirable properties of a moulding sand.
(06 Marks)
b. What are the casting defects? Explain any two.
(06 Marks)
c. With neat sketch, explain Jolt-squeeze moulding machine.
(08 Marks)
3 a. Explain briefly the following with sketches:
i) CO_{2} - moulding
ii) Shell moulding.
(10 Marks)
b. Explain the following with neat sketch,
i) Centrifuging
ii) Squeeze-casting.
(10 Marks)
4 a. Explain the construction and working of direct electric arc furnace. List the advantages.
(10 Marks)
b. Explain with neat sketch working principle of resistance furnace. List the advantages, disadvantages and applications.
(10 Marks)

PART - B

5 a. Define welding. Give classification of welding process.
(06 Marks)
b. Explain Inert Gas Metal Arc Welding (MIG) and Atomic hydrogen welding process.
(08 Marks)
c. Explain briefly forward and backward welding methods in gas welding.
(06 Marks)
6 a. Explain the principle of seam welding with neat sketch.
(06 Marks)
b. With neat sketch, explain projection welding process. List the advantages of projection welding.
(08 Marks)
c. With neat sketch, explain explosive welding process. List the applications.
(06 Marks)
7 a. Discuss the factors affecting weldability of metals.
(06 Marks)
b. Explain the parameters affecting Heat Affected Zone (HAZ) briefly.
(06 Marks)
c. Explain briefly welding defects and its causes.
(08 Marks)
8 a. Compare soldering and brazing processes. Mention their advantages and disadvantages.
(10 Marks)
b. What is NDT? Explain radiography and Eddy current method of inspection of metals.
(10 Marks)

Third Semester B.E. Degree Examination, June/July 2013 Fluid Mechanics

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

1 a. Give reasons:
i) Viscosity of liquids decreases on heating where as viscosity of gases increases on heating. Rain drops and tiny dew drops are spherical in shape.
ii) The miniscus of water is concave upwards while miniscus of mercury is convex upwards.
(06 Marks)
b. Derive the expression for surface tension on a liquid droplet and soap bubble.
(06 Marks)
c. The space between two square flat parallel plates is filled with oil. Each side of the plate is 800 mm . Thickness of oil film is 20 mm . The upper plate moves at a uniform velocity of $3.2 \mathrm{~m} / \mathrm{sec}$, when a force of 50 N is applied to upper plate. Determine:
i) Shear stress.
ii) Dynamic viscosity of oil in poise.
iii) Power absorbed in moving the plate.
iv) Kinematic viscosity in stokes if the specific gravity of oil is 0.9 .
(08 Marks)
2 a. Define: i) Total pressure; ii) Centre of pressure.
(02 Marks)
b. Obtain the expressions for horizontal and vertical components of the resultant hydrostatic force on a submerged curved surface.
(08 Marks)
c. An equilateral triangular plate of 6 m side is immersed in water with its base at 5 m below the free surface. The apex a plate is 9 m below free surface of water. Determine the total pressure on the plate and location of centre of pressure below the free surface.
(10 Marks)
3 a. Define Buoyancy and centre of Buoyancy.
(02 Marks)
b. Write the differences between Langrangian and Eulerian approaches.
(02 Marks)
c. A cone of sp-gravity S 1 is floating in water with its apex downwards. It has a diameter D and vertical height H. Show that for stable equilibrium of cone $H<\frac{1}{2}\left[\frac{D^{2} S^{1 / 3}}{1-S^{1 / 3}}\right]^{1 / 2}$.
(08 Marks)
d. If for a two dimensional potential flow, the velocity potential function is $\phi=x(2 y-1)$. At point $P(4,5)$, determine;
i) The velocity at that point;
ii) The value of stream function.
(08 Marks)

4 a. Derive Euler's equation of motion along a stream line.
(06 Marks)
b. State the momentum equation. How will you apply the momentum equation for determining the force exerted by a flowing liquid on a pipe bend?
(06 Marks)
c. A conical tube is fixed vertically with its smaller end upwards and it forms a part of pipeline. The velocity at the smaller end is $4.5 \mathrm{~m} / \mathrm{s}$ and at the large end is $1.5 \mathrm{~m} / \mathrm{s}$. Length of the conical tube is 1.5 m . The pressure at the upper end is equivalent to head of 10 m of water.
i) Neglecting the frictional loss, determine the pressure at the lower end of tube.
ii) If head loss in the tube is $0.3\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$, where V_{1} and V_{2} are velocities at smaller and larger end respectively, determine the pressure at the larger end assuming flow downward.
(08 Marks)

PART - B

5 a. Derive an expression for discharge over a V-notch.
(07 Marks)
b. Explain briefly the three types of similarities.
c. Define and explain i) Reynold's number; ii) Euler's number. (02 Marks)
d. The variables controlling the motion of a floating vessel in water are the drag force F , which depends on speed V, the length L, mass density ρ, dynamic viscosity μ and accln due to gravity g. Derive the expression for F using Buckingham's π-theorem.
(08 Marks)
6 a. Derive Darcy-Weisbach expression for friction head loss in pipe flow.
(06 Marks)
b. Define the following terms and briefly explain:
i) Hydraulic gradient line (HGL).
ii) Total energy line (TEL).
(04 Marks)
c. A horizontal pipeline 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 m diameter and its diameter suddenly enlarged to 300 mm . The height of water level in the tank is 8 m above the centre of pipe. Considering all the losses of head which occur, determine the rate of flow $\mathrm{f}=0.01$ for both sections of pipe,
(10 Marks)
7 a. Derive Hagen-Poseuille equation for a laminar flow in a circular tube.
(10 Marks)
b. Water at $15^{\circ} \mathrm{C}$ flows between two large parallel plates at a distance of 1.6 mm apart. Determine:
i) The maximum velocity.
ii) The pressure drop/unit length.
iii) The shear stress at the walls of the plates if the average velocity is $0.2 \mathrm{~m} / \mathrm{s}$.

The viscosity of water at $15^{\circ} \mathrm{C}$ is given as 0.01 poise.
(10 Marks)
8 a. Define the following and write their equations:
i) Drag;
ii) Lift; iii) Displacement thickness;
iv) Momentum thickness.
(08 Marks)
b. Explain Mach angle and Mach cone.
c. A kite $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ weighing 3.924 N assumes an angle of 12° to horizontal. The string attached to the kite makes an angle of 45° to the horizontal. The pull on the string is 24.525 N when the wind is blowing at a speed of $30 \mathrm{~km} / \mathrm{hr}$. Find the corresponding coefficient of drag and lift. Density of air is given as $1.25 \mathrm{~kg} / \mathrm{m}^{3}$.
(10 Marks)
\square
Third Semester B.E. Degree Examination, June/July 2013

Advanced Mathematics - I

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Find modulus and amplitude of $1+\cos \theta+i \sin \theta$.
(06 Marks)
b. If n is positive integer, prove that $(\sqrt{3}+i)^{n}+(\sqrt{3}-i)^{n}=2^{n+1} \cos \left(\frac{n \pi}{2}\right)$.
(07 Marks)
c. Find the cube root of $1+\mathrm{i}$ and represent them in the Argand diagram.
(07 Marks)

2 a. Find the $n^{\text {th }}$ derivative of $\mathrm{e}^{\mathrm{ax}} \sin (\mathrm{bx}+\mathrm{c})$.
(06 Marks)
b. If $y=e^{m \cos ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+m^{2}\right) y_{n}=0$.
(07 Marks)
c. Find the $\mathrm{n}^{\text {th }}$ derivative of $\frac{\mathrm{x}^{2}}{(\mathrm{x}+2)(2 \mathrm{x}+3)}$
(07 Marks)

3 a. Prove that $\tan \phi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$ with usual notations.
(06 Marks)
b. Find the pedal equation for the curve $\mathrm{r}=\mathrm{a}(1+\cos \theta)$.
(07 Marks)
c. Expand $\mathrm{f}(\mathrm{x})=\sqrt{1+\sin 2 \mathrm{x}}$ using Maclaurin's series uptg $4^{\text {th }}$ term.
(07 Marks)

4 a. If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
(06 Marks)
b. If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(07 Marks)
c. If $u=\tan ^{-1} x+\tan ^{-1} y$ and $V=\frac{x+y}{1-x y}$, find the value of $\frac{\partial(u, v)}{\partial(x, y)}$.
(07 Marks)

5 a. Obtain the reduction formula for $\int \cos ^{n} \mathrm{x} d \mathrm{x}$ where n is a positive integer.
(06 Marks)
b. Evaluate $\int_{0}^{2} \mathrm{x}^{5 / 2} \sqrt{2-\mathrm{x}} \mathrm{dx}$.
(07 Marks)
c. Evaluate $\int_{1}^{2} \int_{3}^{4}\left(x y+e^{y}\right) d y d x$.
(07 Marks)

6 a. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$.
(06 Marks)
b. Prove that $\sqrt{\frac{1}{2}}=\sqrt{\pi}$.
(07 Marks)
(07 Marks)

7 a. Solve $x y \frac{d y}{d x}=1+x+y+x y$.
b. Solve $\left[x \tan \left(\frac{y}{x}\right)-y \sec ^{2}\left(\frac{y}{x}\right)\right] d x+x \sec ^{2}\left(\frac{y}{x}\right) d y=0$
c. Solve $\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x$.

8 a. Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=2 e^{3 x}$
b. Solve $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=\sin 2 x$.
c. Solve $\frac{d^{2} y}{d^{2}}+4 y=1+x^{2}$

